Functional Characterization of a Missing Branch Component in Haematococcus pluvialis for Control of Algal Carotenoid Biosynthesis
نویسندگان
چکیده
منابع مشابه
Functional Characterization of a Missing Branch Component in Haematococcus pluvialis for Control of Algal Carotenoid Biosynthesis
Cyclization of acyclic lycopene by cyclases marks an important regulatory point in carotenoid biosynthesis. Though some algal lycopene epsilon cyclases (LCYEs) have been predicted computationally, very few have been functionally identified. Little is known about the regulation mechanisms of algal LCYEs. Recent comparative genomic analysis suggested that Haematococcus pluvialis contained only th...
متن کاملCharacterization of carotenoid hydroxylase gene promoter in Haematococcus pluvialis.
Astaxanthin, a high-value ketocarotenoid is mainly used in fish aquaculture. It also has potential in human health due to its higher antioxidant capacity than beta-carotene and vitamin E. The unicellular green alga Haematococcus pluvialis is known to accumulate astaxanthin in response to environmental stresses, such as high light intensity and salt stress. Carotenoid hydroxylase plays a key rol...
متن کاملCarotenoid Distribution in Living Cells of Haematococcus pluvialis (Chlorophyceae)
Haematococcus pluvialis is a freshwater unicellular green microalga belonging to the class Chlorophyceae and is of commercial interest for its ability to accumulate massive amounts of the red ketocarotenoid astaxanthin (3,3'-dihydroxy-β,β-carotene-4,4'-dione). Using confocal Raman microscopy and multivariate analysis, we demonstrate the ability to spectrally resolve resonance-enhanced Raman sig...
متن کاملEnhanced Carotenoid Biosynthesis by Oxidative Stress in Acetate-Induced Cyst Cells of a Green Unicellular Alga, Haematococcus pluvialis.
In a green alga, Haematococcus pluvialis, a morphological change of vegetative cells into cyst cells was rapidly induced by the addition of acetate or acetate plus Fe to the vegetative growth phase. Accompanied by cyst formation, algal astaxanthin formation was more enhanced by the addition of acetate plus Fe than by the addition of acetate alone. Encystment and enhanced carotenoid biosynthesis...
متن کاملRegulation of two carotenoid biosynthesis genes coding for phytoene synthase and carotenoid hydroxylase during stress-induced astaxanthin formation in the green alga Haematococcus pluvialis.
Astaxanthin is a high-value carotenoid used as a pigmentation source in fish aquaculture. In addition, a beneficial role of astaxanthin as a food supplement for humans is becoming evident. The unicellular green alga Haematococcus pluvialis seems to be a suitable source for natural astaxanthin. Astaxanthin accumulation in H. pluvialis occurs in response to environmental stress such as high light...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Plant Science
سال: 2017
ISSN: 1664-462X
DOI: 10.3389/fpls.2017.01341